Skew Category Algebras

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect Category-graded Algebras

In a perfect category every object has a minimal projective resolution. We give a sufficient condition for the category of modules over a category-graded algebra to be perfect. AMS Subject Classification (2000): 18E15, 16W50. In [6] the second author explored homological properties of algebras graded over a small category. Our interest in these algebras arose from our research on the homologica...

متن کامل

Category O over Skew Group Rings

We study the BGG Category O over a skew group ring, involving a finite group acting on a regular triangular algebra. We relate the representation theory of the algebra to Clifford theory for the skew group ring, and obtain results on block decomposition, semisimplicity, and enough projectives. O is also shown to be a highest weight category; the BGG Reciprocity formula is slightly different bec...

متن کامل

Skew group algebras of piecewise hereditary algebras are piecewise hereditary

The aim of this paper is twofold. First, we show that the main results of HappelRickard-Schofield (1988) and Happel-Reiten-Smalø (1996) on piecewise hereditary algebras are coherent with the notion of group action on an algebra. Then, we take advantage of this compatibility and show that if G is a finite group acting on a piecewise hereditary algebra A over an algebraically closed field whose c...

متن کامل

Semi-perfect Category-graded Algebras

We introduce the notion of algebras graded over a small category and give a criterion for such algebras to be semi-perfect. AMS Subject Classification (2000): 18E15,16W50.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics in Computer Science

سال: 2019

ISSN: 1661-8270,1661-8289

DOI: 10.1007/s11786-019-00415-6